
Sums of k-th Powers and Fourier Coefficients of
Cusp Forms 1

Zhining Wei
Department of Mathematics, Ohio State University, Columbus, OH 43210, USA
wei.863@buckeyemail.osu.edu

Abstract: In this paper, we will first establish a power saving result for the shifted
convolution sums of k-th powers and the normalized Fourier coefficients of SL2(Z)
cusp forms. Later we will generalize the result to higher rank cases.

Keywords Shifted convolution sums, cusp forms, circle method, Voronoi formula.

Mathematics Subject Classification 11F30, 11P05, 11P55

1 Introduction
The study of shifted convolution sums of arithmetic functions is a classical theme in an-
alytic number theory. In 1927, Ingham [Ing] first obtained the following asymptotic for-
mula for the divisor function d(n):∑

n≤X

d(n + 1)d(n) ∼
6
π2 X(log X)2

as X → ∞. Later, Deshouillers and Iwaniec [DI] showed, for any ε > 0,∑
n≤X

d(n + 1)d(n) ∼
6
π2 X(log X)2 + c1X log X + c2X + O(X2/3+ε)

where c1, c2 are some constants not related to ε.
Since Selberg’s paper [Sel], the shifted convolution of GL2 Fourier coefficients has

received much attention. Indeed, nontrivial bounds of GL2 ×GL2 shifted convolutions
have profound implications on subconvexity problems and quantum unique ergodicity.

1Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.
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([Blo1], [Blo2] and [Hol]). For shifted convolution of higher rank cases, one can refer to
[Pitt] and [Mu].

This paper will investigate the shifted convolution of Fourier coefficients of cusp
forms and k-th powers. We can formulate the problem as follows: let s and k be natu-
ral numbers. Denote by rs,k(n) the number of representations of a positive integer n as the
sum of s positive integral k-th powers. Additionally, denote by a f (n) the n-th normalized
Fourier coefficient of a holomorphic cusp form of weight l,

f (z) =

∞∑
n=1

a f (n)n
l−1
2 e(nz) ∈ Sl(SL2(Z))

or a Maass cusp form

f (z) = y1/2
∑
n,0

a f (n)Kit(2π|n|y)e(nx)

with the Laplacian eigenvalue λ = 1
4 + t2. Let φ(x) be a smooth function compactly

supported in [1/2, 1]. In this paper, we are interested in the following (smooth) shifted
convolution sum

∞∑
n=1

a f (n + 1)rs,k(n)φ
( n

X

)
(1.1)

By Deligne’s seminal work [Del] on the Fourier coefficients of holomorphic cusp forms,
the trivial bound for the shifted convolution is X

s
k +ε for any ε > 0. On the other hand,

by the cancellations in the sum of a f (n) twisted by additive characters, it is natural to
ask whether we can establish power savings for such shifted convolutions. For the non-
holomorphic case, we have not proved the Ramanujan conjecture yet. However, it is also
of great interest to establish similar power saving results for the Maass form case.

More generally, let aπ(n1, . . . , nm−1) denote a Whittaker-Fourier coefficient of a cusp
form π on SLm(Z). We can establish a shifted convolution of the form

∞∑
n=1

aπ(1, . . . , 1, n + 1)rs,k(n)φ
( n

X

)
. (1.2)

and expect power saving results for such shifted convolutions.
The goal of this paper is to establish a non-trivial bound for 1.1 and 1.2 of the type

O(X
s
k−δ+ε). Here δ is some positive number (depending on s, k) and ε can be any positive

number.
Here are many papers investigating the case k = 2. In [Luo2], Luo derived a Voronoi-

type formula for rs,2(n) and obtained that, for s ≥ 2 and f a fixed holomorphic or Maass
cusp form, ∑

n≤X

a f (n + 1)rs,2(n) << X
s
2−δs+ε

for some δs > 0 depending on s and any ε > 0.
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For the higher rank case, Sun [Sun] used the GL(3) Voronoi formula and proved

∞∑
n=1

aπ(1, n + b)r3,2(n) << X
3
2−

1
8 +ε

for any ε > 0 and b an integer satisfying 1 ≤ b ≤ X. Later Jiang and Lü generalized this
result to GL(m) Hecke-Maass cusp forms [JL].

However, establishing a nontrivial bound for k ≥ 3 can be much more challenging.
Luo [Luo1] first considered the case k ≥ 3: for GL(2) case, he obtained the power saving
results for s ≥ k + 1 provided that k = 3 or 4. Additionally, he established the power
saving for large k.

In section 3, we will prove the following theorem:

Theorem 1.1. Let k ≥ 3. Define A(k) to be

A(k) =

 (k+1)2

4 if k is odd
k2+k

4 if k is even

Then for s > A(k), we have

∞∑
n=1

a f (n + 1)rs,k(n)φ
( n

X

)
<< X

s
k−δ+ε

for some δ > 0 depending on s, k and any ε > 0.

Remark 1.2. In Luo’s paper [Luo1], Theorem 1 established the power saving for s ≥
k2 + O(k) when f is a GL(2) cusp form. Theorem 1.1 improves his result by reducing the
number of variables to 1

4 k2 + O(k).

The proof makes use of the circle method. For the major arc, we will apply Voronoi’s
formula to establish a power saving. For the minor arc, we can obtain the power saving
using Bourgain’s improvement on Hua’s inequality.

For the higher rank case, we will establish the following theorem in section 4. Before
the statement of the theorem, we introduce some notations: denote by dte the smallest
integer no smaller than t. Then we define the following functions

f1(k) =
1
2

{
k2 + 1 − max

i<k,2i<k2

⌈
ki − 2i

k − i + 1

⌉}
=

k2 + 1
2
−

1
2

log k
log 2

+ O(1),

and

f2(k) =
1
2

{
k2 + 1 −max

i<k

⌈
i
k − i − 1
k − i + 1

⌉}
=

k2 − k
2

+ O(
√

k)

for integers k ≥ 2. It can be checked that f1(k) ≤ f2(k) when k ≤ 12. For larger k, the
second expression can be better. The theorem is stated as follows:
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Theorem 1.3. Let π be an even Maass cusp form on SLm(Z) with m ≥ 3. Suppose that
k ≥ 3 and k , 4 and

s > min{ f1(k), f2(k)},

we have
∞∑

n=1

aπ(1, . . . , 1, n + 1)rs,k(n)φ
( n

X

)
<< X

s
k−δ+ε

for some positive δ and any ε > 0.

Remark 1.4. For the case k = 4, we can establish the power saving for s > 8.

Remark 1.5. In Luo’s paper [Luo1], Theorem 3 showed the power saving for s ≥ k(k +

1) in the higher rank case.Theorem 1.3 improves his result by reducing the number of
variables to k2−k

2 + O(
√

k).

To prove this, we will again apply the circle method. However, for the case k = 3, we
will use a non-standard circle method.

For simplicity, we would set:

B(k) = min { f1(k), f2(k)}}

For the case k = 3, we can prove a stronger result than that in Theorem 1.3. That is,
for s ≥ 5 (Notice that B(3) = 5) and π being an even Maass cusp form on SLm(Z), one has

∞∑
n=1

aπ(1, . . . , 1, n + 1)rs,3(n)φ
( n

X

)
<< X

s
3−

1
4m +ε

for any ε > 0.
We can improve the power saving when m = 4 using the standard circle method,

which is the following theorem in section 5:

Theorem 1.6. Let π be an even Hecke-Maass cusp form on SL4(Z). Then we have

∞∑
n=1

aπ(1, 1, n + 1)φ
( n

X

)
r5,3(n) << X

5
3−

1
12 +ε

for any ε > 0.

For the minor arc part, we can apply Hua’s inequality. For the major arc, our strategy
involves the Voronoi formula of the high rank case and a tight estimation of the exponen-
tial sum 5.1.
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2 Prelimiaries
In the following sections, assume that s, k, n, l,m are positive integers and X is a suffi-
ciently large number. Denote by f a fixed SL2(Z) cusp form, holomorphic or Maass, and
by a f (n) the n-th normalized Fourier coefficient of f (z). Suppose that π is a fixed even
Maass form on SLm(Z).

For fixed X > 0, we define the following functions

Fk(α) =
∑

m≤X1/k

e(αmk)

G f (α) =

∞∑
n=1

a f (n + 1)φ
( n

X

)
e(−αn)

Gπ(α) =

∞∑
n=1

aπ(1, . . . , 1, n + 1)φ
( n

X

)
e(−αn)

In this case, it is clear that

∞∑
n=1

a f (n + 1)rs,k(n)φ
( n

X

)
=

∫ 1

0
G f (α)F s

k (α) dα

and
∞∑

n=1

aπ(1, . . . , n + 1)rs,k(n)φ
( n

X

)
=

∫ 1

0
Gπ(α)F s

k (α) dα.

2.1 Some Lemmas on Fk(α)
Fk(α) is a fundamental object when studying the Waring problem since

rs,k(n) =

∫ 1

0
F s

k (α)e(−αn) dα.

When studying the integral, the circle method plays a central role. Let P,Q be two positive
real numbers such that PQ = X. Then we define

M =
⋃

1≤q≤P

⋃
1≤a≤q
(a,q)=1

M(a, q)

where

M(a, q) =

{
α :

∣∣∣∣∣α − a
q

∣∣∣∣∣ ≤ 1
qQ

}
This is a disjoint union once Q ≥ 2P. Then set

m =

(
1
Q
, 1 +

1
Q

]
\M.
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M is called the major arc and m is called the minor arc part. Since Fk(α) is of period 1,
the integral can be written as

rs,k(n) =

∫ 1

0
F s

k (α)e(−αn) dα =

∫
M

F s
k (α)e(−αn) dα +

∫
m

F s
k (α)e(−αn) dα.

In the proof of Theorem 1.1, we will use the so-called standard choice: for X > 0, set

P =
X1/k

2k
, Q =

X
P
.

We will use the standard choice to prove Theorem 1.3 except for the extreme case k = 3.
For Theorem 1.6, we will again use the standard choice of P,Q.

A similar argument shows:

∞∑
n=1

a f (n + 1)rs,k(n)φ
( n

X

)
=

∫
M

G f (α)F s
k (α) dα +

∫
m

G f (α)F s
k (α) dα. (2.1)

Similarly, we also call the integral overM the major arc and the second integral the minor
arc respectively.

We also have a similar expression for aπ(1, . . . , 1, n + 1) case, that is,

∞∑
n=1

aπ(1, . . . , 1, n + 1)rs,k(n)φ
( n

X

)
=

∫
M

Gπ(α)F s
k (α) dα +

∫
m

Gπ(α)F s
k (α) dα.

For the major arc part, we have the following theorem, which is Theorem 4.4 in [Va]:

Theorem 2.1 ([Va]). Suppose that s ≥ max(5, k + 1). Then there is a positive number δ
such that whenever 1 ≤ n ≤ X,∫

M

F s
k (α)e(−αn) dα =

Γ
(
1 + 1

k

)s

Γ
(

s
k

) Ss,k(n, P)n
s
k−1 + O(n

s
k−1−δ)

where

Ss,k(n, P) =
∑
q≤P

q∑
a=1

(a,q)=1

1
q

q∑
r=1

e
(
ark

q

)s

e
(
−na

q

)

is called the singular series.

Remark 2.2. By checking the proof of the theorem in Vaughan’s book, it is easy to see,
when s = 5 and k = 3, δ = 1

12 .

For simplicity, we set

S (q, a) =

q∑
r=1

e
(
ark

q

)
.

(For simplicity, the index k is ignored when defining S (q, a).) We have the following
lemma for S (q, a), which is Theorem 4.2 in [Va]:
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Lemma 2.3 ([Va]). Suppose that (a, q) = 1. Then

S (q, a) << q1− 1
k .

Here are also several lemmas for the minor arc. Actually, the following lemma shows
that the minor arc of Fk(α) is “small”:

Lemma 2.4 (Weyl’s Inequality, [Va], [Bo]). Let α = (α1, . . . , αk) ∈ Rk. Then we define

fk(α,Y) =
∑
n≤Y

e(α1n + · · · + αknk).

Assume that ∣∣∣∣∣αk −
a
q

∣∣∣∣∣ ≤ 1
q2 (a, q) = 1, k ≥ 2.

Then we have
fk(α,Y) << Y1+ε(q−1 + Y−1 + qY−k)σ(k)

where σ(k) = max
(

1
k(k−1) ,

1
2k−1

)
. As a direct corollary, for α ∈ m, that |α − a/q| < 1

qQ
implies q > P and hence

Fk(α) << Y1+ε(q−1 + Y−1 + qY−k)σ(k)

where Y = X1/k.

In addition, for the integral, we have the following Hua’s inequality:

Lemma 2.5 (Hua’s inequality, [Hua], [Bo]). For fixed positive integer k, let Fk(α) be the
function defined above, then for 1 ≤ l ≤ k∫ 1

0
|Fk(α)|2

l
dα << Y2l−l+ε

where Y = X
1
k . Later Bourgain [Bo] shows that∫ 1

0
|Fk(α)|l(l+1) dα << Y l2+ε .

For Fk(α), another evidence showing that the minor arc is small is the following
lemma, which is Theorem 2.1 in [Wo1]:

Lemma 2.6 ([Wo1]). For the standard choice of the minor arc, we have∫
m

|Fk(α)|2s dα << Y
1
2 k(k−1)−1+ε Js,k(2Y)
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with Y = X1/k and Js,k(Y) counting the number of solutions to the following homogeneous
equations:

x1 + · · · + xs = y1 + · · · + xs

x2
1 + · · · + x2

s = y2
1 + · · · + x2

s

· · · · · ·

xk
1 + · · · + xk

s = yk
1 + · · · + xk

s

with 1 ≤ xi, yi ≤ Y

Here are some remarks on this result. By checking the proof in [Wo1], we could show,
for a general choice of P,Q,∫

m

|Fk(α)|2s << Y
1
2 k(k−1)+ε Js,k(2Y) max

{
1
Y
,

1
P

}
.

In addition, for all integers s, k ≥ 1,we have the so-called Vinogradov mean value theorem

Js,k(X) <<s,k,ε Xε(Xs + X2s− k(k+1)
2 ).

This is proved by [Wo2] for k = 3 via efficient congruencing and [BDG] for k ≥ 4 via
l2-decoupling method. A good reference for Vinogradov mean value theorem is [Pi].

Then combine these results, and we can show: for s ≥ k(k+1)
2 ,∫

m

|Fk(α)|2s << Y2s−k+ε max
{

1
Y
,

1
P

}
(2.2)

Based on Lemma 2.6, the following lemma is valid by interpolation:

Lemma 2.7 ([Wo1], Lemma 3.1; [Bo], Theorem 11). Assume the standard choice ofM
and m. Suppose that s > B(k), then we have∫

m

|Fk(α)|s dα << X
s
k−1−δ+ε

for some δ > 0 depending on s and any ε > 0.

By Equation 2.2, we can improve Lemma 2.7 slightly. That is, if we choose P =

X1/k−η for sufficiently small η, we will establish the power saving for the same s. This will
help to prove the remark at the end of Section 4.

2.2 Some Lemmas on G f (α) and Gπ(α)
For f either a holomorphic or Maass cusp form of SL2(Z), the Hecke bound is:
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Lemma 2.8 (Hecke’ bound, [Iw1], [Iw2]). Let a f (n) be the n-th normalized Fourier co-
efficient of f . Then for any α ∈ R,∑

n≤X

a f (n)e(αn) << f ,ε X
1
2 +ε

with any ε > 0 and this estimate is uniformly for α ∈ [0, 1).

Then we have the Voronoi formula for f (z), either a holomorphic or Maass cusp form.

Lemma 2.9 ([Go]). Let f (z) =
∑

n≥1
a f (n)n(l−1)/2e(nz) ∈ Sl(SL2(Z)). Let ψ be a compactly

supported function. For any integer q ≤ 1 with (a, q) = 1, we have:

∞∑
n=1

a f (n)e
(
an
q

)
ψ(n) =

2π
q

il
∞∑

n=1

a f (n)e
(
−

ān
q

)
Φ

(
n
q2

)
where ā is the multiplicative inverse of a(mod q) and

Φ(y) =

∫ ∞

0
ψ(x)Jl−1

(
4π
√

yx
)

dx

Lemma 2.10 ([Me]). Let f (z) = y1/2 ∑
n,0 a f (n)Kit(2π|n|y)e(nx) be a Maass cusp form for

SL2(Z). Let ψ be a compactly supported function. For any integer q ≤ 1 with (a, q) = 1,
we have:

∞∑
n=1

a f (n)e
(
an
q

)
ψ(n) =

1
q

∑
±

∞∑
n=1

a f (∓n)e
(
±

ān
q

)
H±

(
n
q2

)
where ā is the multiplicative inverse of a(mod q) and

H−(y) = −
π

cosh πt

∫ ∞

0
ψ(x){Y2it + Y−2it}(4π

√
xy) dx

H+(y) = 4 cosh πt
∫ ∞

0
ψ(x)K2it(4π

√
xy) dx

Suppose that φ( j)(x) << j 1. Via integration by parts, we can show that the sums on

the right hand side of Lemma 2.9 and Lemma 2.10 are essentially supported on n << q2Xε

X

for any ε > 0. The contribution from the terms with n >>
q2Xε

X is negligibly small. For
smaller values, we have the trivial bound

Φ

(
n
q2

)
,H±

(
n
q2

)
<< X.
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To prove Theorem 1.6, We will apply the Voronoi formula for

∞∑
n=1

aπ(1, 1, n + 1)e
(
−

an
q

)
φ
( n

X

)
.

Here we will first introduce the general theory for the Voronoi formula of GL(m).
Let π be a Maass cusp form of SLm(Z) and ψ a smooth function compactly supported in
(0,∞). Then we define

G±,ψ(x) =
1

2πi

∫
Re s=−σ

ψ̃(s)xsF±(s) ds

where σ > 0,

ψ̃(s) =

∫ ∞

0
ψ(x)xs dx

x

is the Mellin transformation of ψ, and

F±(s) =
1
2
π−m(1/2−s)

 m∏
j=1

Γ
(1−s−µ̄π( j)

2

)
Γ
(

s−µπ( j)
2

) ± i−m
Γ
(2−s−µ̄π( j)

2

)
Γ
(1+s−µπ( j)

2

)
with {µ̄π( j)}mj=1 being the Langlands parameter for π̃, the dual of π. For ~d = (d1, . . . , dm−2)
being an (m − 2)-tuple of integers, we define

h(~d) =

m−2∏
i=1

dm−i
i .

Then we have the following Voronoi formula:

Theorem 2.11 ([JL], Lemma 2.4). Let π be an even Hecke-Maass form and ψ a compactly
supported smooth function on (0,∞). We have, for (a, q) = 1,

∞∑
n=1

aπ(1, . . . , 1, n)e
(
an
q

)
ψ(n) =

q
∑
±

∑
d1 |q

∑
d2 |

q
d1

· · ·
∑

dm−2 |
q

d1 ···dm−3

∞∑
n=1

aπ(n, dm−2 . . . , d1)
d1 · · · dm−2n

KLm−2(ā,±n; ~d, q)G∓,ψ

nh(~d)
qm

 .
where ā denotes the multiplication inverse of a(mod q) and KLm−2(a,∓n; d̄, q) is the
hyper-Kloosterman sum:

KLm−2(a, n; ~d, q) =
∑

t1(mod q/d1)

∗
e
(

at1
q/d1

) ∑
t2(mod q/(d1d2))

∗
e
(

t̄1t2
q/(d1d2)

)

· · ·
∑

tm−2(mod q/(d1···dm−2))

∗
e
(
tm−3tm−2 + ntm−2

q/(d1 · · · dm−2)

)
.
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For simplicity, we set
qi =

q
d1 · · · di

.

This gives q j|q j−1. Then for any positive integer n, we can define n∗∗ to be the largest
square-full divisor of n and n∗ = n

n∗∗ . Then n∗ is square-free, n = n∗n∗∗ and (n∗, n∗∗) = 1.
We have the following several lemmas:

Lemma 2.12 ([RY], Theorem 1.1). Let m ≥ 4, (n, q1) = 1. Then

q1∑
a=1

|KLm−2(a, n; ~d, q)|2 =

{
λnq1ϕ(q1)qm−3

m−2 if q∗∗2 = · · · = q∗∗m−2
0 otherwise

where ϕ is the Euler function. Here λn satisfies 0 < λn < 1.

Additionally, for G±,ψ, we have the following lemma in [JL]:

Lemma 2.13 ([JL], Lemma 2.7). Let G±,ψ(x) be defined above. Suppose that

ψ( j) << X− j for j ≥ 0
∫
|ψ( j)(ξ)| dξ << X− j+1 for j ≥ 1.

Then for any A > 0,

G±,ψ(x) <<
{

X−A if x > X−1

(xX)1/2 if x ≤ X−1

Remark 2.14. In the proof of Lemma 2.13 in [JL], they first showed the following result:

G±,ψ(x) <<σ

(
1

xX

)σ
.

Lemma 2.13, together with the remark, will give the following proposition:

Proposition 2.15. Let ε > 0 be a fixed positive number and π an even Hecke-Maass cusp
form on GLm(Z) with m ≥ 3. Suppose that q << P = X1/m−ε and (a, q) = 1, then∑

n≥1

aπ(1, . . . , 1, n + 1)e
(
−

an
q

)
φ
( n

X

)
<<ε,π,A X−A

for any A > 0.

Proof We can apply the Voronoi formula 2.11 and obtain

∞∑
n=1

aπ(1, . . . , 1, n + 1)e
(
an
q

)
ψ(n) =

qe
(
−

a
q

)∑
±

∑
d1 |q

∑
d2 |

q
d1

· · ·
∑

dm−2 |
q

d1 ···dm−3

∞∑
n=1

aπ(n, dm−2 . . . , d1)
d1 · · · dm−2n

KLm−2(ā,±n; ~d, q)G∓,ψ

nh(~d)
qm


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with ψ(x) = φ
(

n−1
X

)
. Obviously ψ satisfies the conditions in Lemma 2.13.

Assume that q
1
m−ε << X. Then we have

nh(~d)
qm > X−1

for any n ≥ 1. Actually this could be improved to

nh(~d)
qm >

nε

X
.

Then by the remark bellow Lemma 2.13, we can show that

G±,ψ

nh(~d)
qm

 << (nX)−A

for any sufficiently large A.
Notice that the hyper-Kloosterman sum can be trivially bounded by

KLm−2(ā,±n; ~d, q) ≤ qm−2

and we finish the proof. �
To prove Theorem 1.6, we also need the following lemma:

Lemma 2.16 ([RY], (1.15)). Let aπ(n1, . . . , nm−1) be the Whittaker-Fourier coefficient of
π, a cusp form of SLm(Z). Then for aπ(n, dm−2, . . . , d1), we have∑

nh(~d)≤X

|aπ(n, dm−2, . . . , d1)|2 << X1+ε .

for any ε > 0.

If we set d1 = d2 = · · · = dm−2 = 1, and take the dual of π, Lemma 2.16 shows:

Corollary 2.17. Let aπ(n1, . . . , nm−1) be the Whittaker-Fourier coefficient of π, a cusp
form of SLm(Z). Then we have∑

n≤X

|aπ(1, . . . , 1, n)|2 << X1+ε (2.3)

for any ε > 0. By Cauchy’s inequality,∑
n≤X

|aπ(1, . . . , 1, n)| << X1+ε (2.4)
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3 Proof of Theorem 1.1
Proof of Theorem 1.1 The proof of the Maass cusp form case can be similar to that of
the holomorphic cusp form case. So we only consider the case when f is a holomorphic
cusp form.

To prove Theorem 1.1, we use the standard circle method, that is, P = X1/k

2k and Q = X
P .

We first consider the major arc part in Equation 2.1. By Theorem 2.1, the major arc can
be written as:

Γ
(
1 + 1

k

)s

Γ
(

s
k

) ∞∑
n=1

a f (n + 1)Ss,k(n, P)n
s
k−1φ

( n
X

)
+ O(X

s
k−δ).

Then by inserting the definition ofSs,k(n, P), the first term in the right hand side becomes:

∑
q≤P

1
qs

∑
a(mod q)

∗
S (q, a)s

∞∑
n=1

a f (n + 1)n
s
k−1e

(
−

an
q

)
φ
( n

X

)
.

By Abel summation, Voronoi formula 2.9 and the fact that q ≤ X1/k ≤ X
1
2−

1
6 , this is

negligibly small.
Next we consider the minor arc in Equation 2.1. Recall that

A(k) =

 k(k+2)
4 if k even

(k+1)2

4 if k odd

First, suppose that k is even. Then by Hua’s inequality 2.5. we have∫ 1

0
|Fk(α)|A(k) dα << X

k
4 +ε . (3.1)

Then by Weyl’s inequality 2.4, we have

max
α∈m
|Fk(α)| << X1/k−δ+ε (3.2)

for some δ > 0.
Then for s > A(k), by Hecke’s bound 2.8, Equation 3.2 and Equation 3.1, we have∫

m

G f (α)Fk(α)s dα << X
1
2 +εX(s−A(k))( 1

k−δ+ε)
∫ 1

0
|Fk(α)|A(k) dα

<< X
1
2 +

s−A(k)
k −(s−A(k))δ+ k

4 +ε = X
s
k−(s−A(k))δ+ε .

Next we consider the odd case. Notice that A(k) = 1
2

(k−1)(k+1)
4 + 1

2
(k+1)(k+3)

4 . Then by
Cauchy-Schwarz inequality and Hua’s inequality 2.5, we have∫ 1

0
|Fk(α)|A(k) dα ≤

(∫ 1

0
|Fk(α)|

(k−1)(k+1)
4

)1/2 (∫ 1

0
|Fk(α)|

(k+1)(k+3)
4

)1/2

<< X
k2+1

4k . (3.3)

13



Then we apply Hecke’s bound 2.8, Equation 3.2 and Equation 3.3:∫
m

G f (α)Fk(α)s dα << X
1
2 +εX(s−A(k))( 1

k−δ+ε)
∫ 1

0
|Fk(α)|A(k) dα

<< X
1
2 +

s−A(k)
k −(s−A(k))δ+ k2+1

4k +ε = X
s
k−(s−A(k))δ+ε

Combine with the results on the major arcs, we obtain, for s > A(k),

∞∑
n=1

a f (n + 1)rs,k(n)φ
( n

X

)
<< X

s
k−δ+ε

for some δ > 0 depending on s, k and any ε > 0. �

Remark 3.1. By a similar argument and Miller’s bound [Mi] for SL3(Z) Maass cusp
forms, we could show that for s > 9

16 k2 + O(k),

∞∑
n=1

aπ(1, n + 1)rs,k(n)φ
( n

X

)
<< X

s
k−δ+ε

for some δ depending on s, k and any ε > 0. However, this is weaker than Theorem 1.3.

4 Proof of Theorem 1.3
Proof of Theorem 1.3: To prove the theorem, we need to consider the following two
separated cases: k = 3, and k ≥ 5.

The case k = 3: let π be a fixed even Maass cusp form of GLm(Z) with N ≥ 3. Fix ε > 0.
In this part, set P = X1/m−ε and Q = X

P . Then the major arc is given by∫
M

Gπ(α)F s
k (α) dα

By virtue of Theorem 2.1, one has:∫
M

G(α)F s
3 (α) dα =

Γ
(
1 + 1

3

)s

Γ
(

s
3

) ∞∑
n=1

aπ(1, . . . , 1, n + 1)n
s
3−1
Ss,3(n, P)φ

( n
X

)
+ O(X

s
3−δ

′+ε).

Here δ′ is dependent on s. In fact, we can check that δ′ ≥ 1
4m .

Then by inserting the definition of Ss,3(n, P), we get:

∑
q≤P

1
qs

∑
a(mod q)

∗
S (q, a)s

∞∑
n=1

aπ(1, . . . , 1, n + 1)n
s
3−1e

(
−

an
q

)
φ
( n

X

)
.

By Abel summation and Proposition 2.15, this is negligibly small by the choice of P.
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Next, for the minor arc, ∫
m

Gπ(α)F s
k (α) dα,

one can apply Cauchy-Schwartz inequality and Equation 2.3 to obtain:∫
m

Gπ(α)F s
k (α) dα ≤

(∫
m

|Gπ(α)|2 dα
) 1

2
(∫
m

|F3(α)|2s dα
) 1

2

<< X
1
2 +ε

(∫
m

|F3(α)|2s dα
) 1

2

.

By the trivial estimation for F3(α) and Cauchy-Schwarz inequality,∫
m

|F3(α)|2s dα =

∫
m

|F3(α)|2s−10+10 dα ≤ X
2s−10

3

(∫
m

|F3(α)|8 dα
) 1

2
(∫
m

|F3(α)|12 dα
) 1

2

.

(4.1)
By Hua’s inequality, ∫

m

|F3(α)|8 dα ≤
∫ 1

0
|F3(α)|8 dα << X

5
3 +ε . (4.2)

By Equation 2.2, ∫
m

|F3(α)|12 dα <<
X3+ε

P
. (4.3)

Combine Equation 4.1, 4.2 and 4.3 and we have∫
m

Gπ(α)F 2s
3 (α) dα << X

s
3−

1
4m +ε

for any ε > 0. Therefore,∑
n≥1

aπ(1, . . . , 1, n + 1)rs,3(n)φ
( n

X

)
=

∫ 1

0
Gπ(α)F s

3 (α) dα << X
s
3−

1
4m +ε

The case k ≥ 5. We use the standard choice of P and Q, that is, P = X1/k

2k and Q = X
P . First,

we consider the minor arc: ∫
m

Gπ(α)F s
k (α) dα.

By a similar argument to the first case, we have:∫
m

Gπ(α)F s
k (α) dα << X

1
2 +ε

(∫
m

|Fk(α)|2s dα
) 1

2

.

Assume that s > B(k). By Lemma 2.7, we have∫
m

|Fk(α)|2s dα << X
2s
k −1−δ+ε

15



for some δ depending on s, k and any ε > 0. This shows the power saving for the minor
arc.

For the major arc part, we would use a similar method to the case k = 3. By Theorem
2.1, the definition of Ss,k(n, P), and Abel summation, it suffices to show that∑

q≤P

1
qs

∑
a(mod q)

∗
S (q, a)s

∞∑
n=1

aπ(1, . . . , 1, n + 1)e
(
−

an
q

)
φ
( n

X

)
<< X1−δ+ε .

for some δ > 0 and ε > 0. Additionally, this δ will give the same “δ” for the saving of the
major arc part.

For any fixed sufficiently small ε, we split the whole summation into two parts: q <<
X

1
m−ε and X

1
m−ε << q ≤ P. (Noice that when k > m, the second part vanishes by a suitable

choice of ε.)
For q << X

1
m−ε , by Proposition 2.15, this is negligibly small.

Then for the second term and s > 2k, by Equation 2.4 and Lemma 2.3, one has,∑
X

1
m −ε<<q≤P

1
qs

∑
a(mod q)

∗
S (q, a)s

∞∑
n=1

aπ(1, . . . , 1, n + 1)e
(
−

an
q

)
φ
( n

X

)

<<
∑

X
1
m −ε<<q≤P

1
qs

∑
a(mod q)

∗
|S (q, a)|sX1+ε

<< X1+ε
∑

X
1
m −ε<<q≤P

1

q
s
k−1

<< X1−δ+ε

Notice that when k ≥ 5, B(k) ≥ 2k. Therefore, when m ≥ 3, k ≥ 5 and s > B(k), one has:∑
n≥1

aπ(1, . . . , 1, n + 1)rs,k(n)φ
( n

X

)
<<ε X

s
k−δ+ε

for some δ > 0 and any ε > 0. �

Remark 4.1. By the virtual of second part, the power saving for k = 4 and m ≥ 4 will
be obtained when s > 8. That is because, 8 > B(4). However, for k = m = 4 and s = 8,
the power saving can also be shown by setting P = X1/4−η and making use of the remark
bellow Lemma 2.7

5 Proof of Theorem 1.6
Proof of Theorem 1.6 When m = 4, k = 3 and s = 5, we consider the standard choice,
that is, P = X1/3

6 and Q = X
P . Let π be an even Hecke-Maass cusp form of SL4(Z). Then∑

n≥1

aπ(1, 1, n + 1)r5,3(n)φ
( n

X

)
=

∫
M

G(α)F 5
3 (α) dα +

∫
m

G(α)F 5
3 (α) dα.
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We would consider the minor arc. By Cauchy-Schwartz inequality and Equation 2.3, we
have ∫

m

G(α)F 5
3 (α) dα <≤

(∫
m

|G(α)|2 dα
)1/2 (∫

m

|F3(α)|10 dα
)1/2

For the second term on the right hand side, by Cauchy-Schwartz inequality, Hua’s in-
equality and Lemma 2.6, we have∫

m

|F3(α)|10 dα <<
(∫
m

|F3(α)|8 dα
)1/2 (∫

m

|F3(α)|12 dα
)1/2

<< X
13
6 +ε .

for any ε > 0. Combine these results and we obtian∫
m

G(α)F 5
3 (α) dα << X

5
3−

1
12 +ε

for any ε > 0.
Next, we consider the major arc. By a argument similar to the proof of Theorem 1.3,

it suffices to show∑
q≤P

1
q5

∑
a(mod q)

∗
S (q, a)5

∞∑
n=1

aπ(1, , 1, n + 1)e
(
−

an
q

)
φ
( n

X

)
<< X1− 1

12 +ε

for any ε. Here we should point out that, when using Theorem 2.1, we need to check the
error term. Fortunately, the power saving of the error term is exactly 1

12 .

Here for simplicity, we set

A(q) =
∑

a(mod q)

∗
S (q, a)5

∞∑
n=1

aπ(1, , 1, n)e
(
−

an
q

)
φ
( n

X

)
.

Then we apply the Voronoi formula 2.11 this gives:

A(q) =
∑

a(mod q)

∗
S (q, a)5

∞∑
n=1

aπ(1, , 1, n)e
(
−

an
q

)
φ
( n

X

)
= q

∑
±

∑
d1 |q

∑
d2 |

q
d1

∞∑
n=1

aπ(n, d2, d1)
d1d2n

G∓,ψ

nh(~d)
qm

 ∑
a(mod q)

∗
S (q, a)5e

(
−a
q

)
KL2(−ā,±n; ~d, q).

In this case, set

T (a, q;±n, ~d) =
∑

a(mod q)

∗
S (q, a)5e

(
−a
q

)
KL2(−ā,±n; ~d, q). (5.1)
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Notice that KL2(a + q1, n; ~d, q) = KL2(a, n; ~d, q). By Lemma 2.3, Cauchy’s inequality and
Lemma 2.12, we have

T (a, q; n, ~d) ≤
∑

a(mod q)

∗
|S (q, a)|5|KL2(−ā, n; ~d, q)|

<< q10/3

 ∑
a(mod q)

1


1/2  ∑

a(mod q)

|KL2(a, n; ~d, q)|2


1/2

<< q
10
3 +2+ε 1

d1d1/2
2

.

Remark 5.1. Here notice that we can only apply Lemma 2.12 when (n, q1) = 1. However,
by following the proof of Theorem 1.1 in [RY], we can find∑

a(mod q1)

|KL2(a, n; ~d, q)|2 = q1ϕ(q1)φ(q2)T
(
q2,

q2

(n, q2)
; 1, 1

)
,

The definition of T (s, r; b, d) can be found in Lemma 2.1 in [RY]. Additionally, by Lemma
2.4 in [RY], we have:

T
(
q2,

q2

(n, q2)
; 1, 1

)
<< qε2

for any ε > 0. Therefore, ∑
a(mod q1)

|KL2(a, n; ~d, q)|2 << qεq1q2ϕ(q1).

Then by Lemma 2.13, we only need to consider the summation of n over 1 ≤ n <<
q4

h(~d)X
. Then by the second part of Lemma 2.13, Cauchy’s inequality and Lemma 2.16, we

have:

A(q) << q
10
3 +3+ε

∑
±

∑
d1 |q

∑
d2 |

q
d1

∑
nh(~d)<< q4

X

|aπ(n, d2, d1)|
d1d2n

nh(~d)X
q4

 1
2 1

d1d1/2
2

<< X1/2q
10
3 +3−2+ε

∑
±

∑
d1 |q

∑
d2 |

q
d1

1
√

d1d2


∑

nh(~d)<< q4
X

|aπ(n, d2, d1)|2


1/2 

∑
nh(~d)<< q4

X

1
n


1/2

<< q
19
3 +ε .

When k = 3, P = X1/3

6 . This shows:

∑
q≤P

1
q5

∑
a(mod q)

∗
S (q, a)5

∞∑
n=1

aπ(1, , 1, n + 1)e
(
−

an
q

)
φ
( n

X

)
<< P

7
3 +ε << X

7
9 +ε .

Thus we show the power saving of 2
9 which is greater than 1

12 . �
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